

Virtual Production Pipelines vs. Traditional Animation Pipelines

Name: Dr. Bharat Jadhav

Faculty, Digital Art, Tilak Maharashtra Vidyapeeth, Pune -37

bharatjadhav@tmv.edu.in

Abstract

With the use of real-time gaming engines, LED wall stages, motion capture, and camera tracking, virtual production (VP) has become a significant shift in the global cinema and animation industries. VP enables real-time visualization and quick creative decision-making, in contrast to typical animation pipelines that follow a linear sequence of pre-production, modeling, rigging, animation, lighting, rendering, and compositing. This study compares the advantages, disadvantages, processes, and industrial uses of both pipelines.

Traditional animation pipelines are still necessary for fine artistic control, stylistic storytelling, and frame-by-frame accuracy, even while virtual production greatly increases speed, flexibility, and on-set cooperation. The study concludes that, rather than replacing conventional workflows, future production will evolve into a hybrid model combining both VP and traditional processes for optimal creative and technical advantage.

Keywords

Virtual Production, Traditional Animation Pipeline, Real-Time Rendering, Offline Rendering, Game Engine Technology, LED Volume Stages, Hybrid Production Workflow.

1. Introduction

Over the past few decades, the animation and filmmaking industries have undergone constant change, progressing from hand-drawn frames to 3D computer-generated imagery and, more recently, to real-time production settings driven by game engines. Traditional animation pipelines have long served as the backbone of animation and VFX production, offering precision, creative control, and reliable workflows. However, they are often time-consuming, costly, and heavily dependent on post-production rendering.

Virtual production (VP), by contrast, introduces real-time rendering, instant feedback, and on-set visualization. Techniques such as motion capture, virtual cameras, and LED wall stages allow filmmakers to visualize final imagery during filming, reducing dependence on green screens. Productions like *The Mandalorian* demonstrate how VP improves efficiency, immersion, and creative collaboration.

This study explores the differences, complementarities, and evolving relationship between traditional animation pipelines and virtual production.

2. Traditional Animation Pipelines

2.1 Definition

A traditional animation pipeline refers to a structured, linear workflow followed to produce 2D or 3D animated content, where each stage is completed sequentially before moving to the next.

2.2 Stages in a Traditional Pipeline

2.2.1 Pre-Production

- Story writing
- Script development

- Storyboarding
- Concept art
- Character and environment design
- Animatic

Pre-production defines the narrative structure, visual style, mood, and camera planning.

2.2.2 Production

This phase involves the creation of all visual elements.

A) Modeling

Creation of 3D characters, props, and environments using software such as Autodesk Maya, Blender, or 3ds Max.

B) Rigging

Adding skeletal structures and control systems to enable movement and deformation.

C) Animation

Bringing characters and objects to life using key frame animation, motion capture, or procedural techniques.

D) Texturing and Shading

Applying surface details, colors, and material properties to models.

E) Lighting

Designing scene illumination to enhance mood, realism, and storytelling.

2.2.3 Rendering

Rendering converts completed 3D scenes into final 2D images or frames. This computationally intensive process calculates lighting, textures, shadows, and motion.

2.2.4 Post-Production

- Compositing
- Colour grading
- Visual effects
- Editing and final output

Traditional pipelines demand significant time, skilled manpower, and computing resources.

3. Virtual Production Pipelines

3.1 Definition

Virtual Production (VP) is a modern filmmaking approach that integrates live-action footage with real-time 3D environments using game engines, LED walls, motion capture, and camera tracking.

3.2 Key Components of Virtual Production

- Real-time rendering engines (Unreal Engine, Unity)
- LED wall / volume stages
- Virtual cameras
- Motion capture systems
- Camera tracking
- Real-time lighting
- Revisualization (Previs) and Technical Visualization (Techvis)

3.3 Stages of the Virtual Production Pipeline

3.3.1 Previsualization (Previs)

Planning camera angles, movement, lighting, and environments before filming, with real-time iteration.

3.3.2 Environment Creation

Designing optimized real-time 3D environments within game engines.

3.3.3 On-Set Virtual Production

- Actors perform in front of LED walls
- Camera movement affects parallax
- Lighting dynamically reacts to virtual environments
- Many shots are captured in-camera

3.3.4 Post-Production

Minimal compositing and corrections are required, as visuals are largely finalized during filming.

4. Key Differences between Traditional and Virtual Production

Aspect	Traditional Animation Pipeline	Virtual Production Pipeline
Workflow	Linear, sequential	Real-time, interactive
Rendering	Slow, offline rendering	Instant, real-time rendering
On-set Visuals	Green screen	LED wall with final environment
Post-production	Heavy compositing	Minimal compositing
Flexibility	Changes require more time	Immediate adjustments
Cost	High long-term production cost	High initial setup, lower long-term cost
Artistic Control	Very high, detailed frame-by-frame control	High but limited by real-time quality
Tools Used	Maya, Blender, Render Man	Unreal Engine, LED Stage, Mocap

5. Advantages of Traditional Animation Pipelines

5.1 Ideal for Stylized and Detailed Art

Allows frame-by-frame control for unique artistic expression.

5.2 Complete Creative Control

Precise manipulation of animation, lighting, textures, and effects.

5.3 Superior Rendering Quality

Offline render engines provide unmatched realism and visual depth.

5.4 Best Suited for Animated Films

Ideal for feature films, stylized animation, and character-driven storytelling.

6. Advantages of Virtual Production

6.1 Real-Time Visualization

Immediate feedback for directors, cinematographers, and actors.

6.2 Faster Production

Eliminates lengthy rendering and reduces compositing workloads.

6.3 Natural Lighting

LED walls provide realistic light interaction with actors and sets.

6.4 Reduced Post-Production

Many shots are near-final directly from the camera.

6.5 Flexible Environment Switching

Rapid scene changes without travel or physical set construction.

7. Limitations of Traditional Pipelines

- Time-consuming and expensive
- Requires large, specialized teams
- Slow visualization and iteration
- Rendering delays increase production timelines

8. Limitations of Virtual Production

- High initial infrastructure cost
- Requires expertise in real-time engines
- Real-time rendering lacks some offline detail
- Limited stylization for animation-heavy projects

9. Industry Examples**9.1 Traditional Pipeline Projects**

- Toy Story, Coco, Kung Fu Panda
- Studio Ghibli films
- Netflix and Indian animation series

9.2 Virtual Production Projects

- The Mandalorian
- *Thor: Love and Thunder* (partial VP)
- Netflix VP stages
- Corporate ads and VR/AR experiences

10. The Future: A Hybrid Pipeline**10.1 Integrating Traditional and Virtual Production**

- Real-time previs + offline rendering
- Motion capture + hand animation refinement
- Hybrid lighting and compositing workflows

10.2 Role of AI in Virtual Production

- Automated lighting adjustments
- AI-generated environments
- Motion prediction
- Scene optimization

11. Conclusion

- Virtual Production enhances speed, collaboration, and visualization
- Traditional pipelines remain essential for artistic depth and quality
- VP complements but does not replace conventional workflows
- Hybrid pipelines represent the future of animation and filmmaking
- Combined workflows offer higher efficiency and creative freedom

References

1. Beeler, C., & Hornung, A. (2021). *Real-Time Rendering in Virtual Production*. ACM SIGGRAPH.
2. Epic Games. (2024). *Using Unreal Engine for Virtual Production*.
3. Rickitt, R. (2020). *Special Effects: The History and Technique*. Billboard Books.
4. Disney Research Studios. (2022). *Virtual Production Workflow Enhancements*.
5. ILM StageCraft. (2020–2023). *The Mandalorian Virtual Production Case Studies*.
6. Lasseter, J. (2001). *Principles of Traditional Animation Applied to CGI*. ACM Computer Graphics.
7. Unity Technologies. (2023). *Real-Time Filmmaking and Virtual Production Guide*.
8. Pixar Animation Studios. (2023). *RenderMan Documentation*.
9. Animation World Network. (2023–2025). *Articles on Traditional and Virtual Production Pipelines*.
10. Netflix Tech Blog. (2024). *Future of Real-Time and Virtual Production in Streaming Content*.